
J .  Fluid Mech. (1990), vol. 216, pp.  411-435 

Printed in Great Britain 
41 1 

Linear-eddy modelling of turbulent transport. 
Part 3. Mixing and differential molecular diffusion 

in round jets 

By ALAN R. KERSTEIN 
Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551-0969, USA 

(Received 10 July 1989) 

The linear-eddy model of turbulent mixing represents a spatially developing flow by 
simulating the time development along a comoving transverse line. Along this line, 
scalar quantities evolve by molecular diffusion and by randomly occurring spatial 
rearrangements, representing turbulent convection. The modelling approach, 
previously applied to homogeneous turbulence and to  planar shear layers, is 
generalized to axisymmetric flows. This formulation captures many features of jet 
mixing, including differential molecular diffusion effects. A novel experiment 
involving two unmixed species in the nozzle fluid is proposed and analysed. 

1. Introduction 
Multidimensional models of chemically reacting turbulent shear flows, involving 

large-eddy simulation, p.d.f. closure, or other methods, cannot affordably resolve all 
relevant lengthscales of the mixing field a t  Reynolds numbers of practical interest. 
A multidimensional model therefore requires a mixing submodel such as Curl’s (1963) 
coalescence-dispersion model to represent the combined influence of molecular 
diffusion and convective stirring a t  the unresolved lengthscales. Because the 
mechanistic distinction between these two influences is absent, the representation of 
Schmidt-number (Sc) effects is problematic (Pope 1985). The consequent practical 
difficulties are evident in efforts to model the measured differences between gaseous 
and liquid mixing in turbulent flows (Givi, Ramos & Sirignano 1985). 

Such differences have been highlighted by an extensive experimental study of 
gaseous and liquid planar mixing layers, summarized by Broadwell & Dimotakis 
(1986). For turbulent round jets, measurements suitable for a t  least a preliminary 
comparison of gaseous and liquid mixing have been performed (Dahm 1985; 
Papantoniou 1985 ; Dowling 1988). (Highlights of these investigations are reported 
by Dahm & Dimotakis 1987, Papantoniou & List 1989, and Dowling & Dimotakis 
1990.) Another indication of Xc sensitivity in turbulent jets is provided by recent 
measurements of differential molecular diffusion in a jet of H, and Freon into air 
(Kerstein et al. 1989). 

The linear-eddy modelling approach, designed to overcome the aforementioned 
deficiency of mixing submodels, was originally formulated in the context of a model 
of mixing in homogeneous turbulence (Kerstein 1988). A generalization to planar 
shear layers was found to reproduce measured Sc effects as well as Reynolds-number 
Re and Damkohler-number Ba effects (Kerstein 1989). For application to round jets, 
the approach is generalized here to axisymmetric geometries, and jet similarity 
scalings are incorporated. 
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The paper is organized as follows. The linear-eddy modelling concept is briefly 
reviewed, and an axisymmetric formulation is introduced. This formulation is used 
to compute spatially resolved fluctuation statistics for turbulent scalar mixing in 
gaseous (Sc = 0.7) and liquid (Sc = 600) jets for Rejet ranging over a factor of lo3. 
Next, predictions of differential molecular diffusion effects are presented for a jet of 
H, and propane (Sc = 0.18 and 1.2, respectively) into air. Finally, a novel experiment 
involving two unmixed species in the nozzle fluid is proposed and analysed. These 
results are compared to  measurements and to  the predictions of other models. 

2. Model formulation and implementation 
2.1. The linear-eddy modelling approach 

To preserve the mechanistic distinction between small-scale convective stirring and 
molecular diffusion, thereby capturing Sc  effects, the approach that is adopted is to 
resolve all relevant lengthscales in a stochastic simulation of turbulent mixing. For 
Re of practical interest, of order lo4 for free shear flows, this is affordable only in a 
one-dimensional computation. The computational domain is chosen to be a line 
transverse to  the mean flow. (For some applications it is preferable to choose a 
streamwise line (Kerstein 1986).) The simulated time evolution of the scalar field on 
this line represents the spatial development of the scalar field along a transverse line 
moving with the mean flow. Thus, each simulated realization is analogous to a planar 
snapshot of the flow, with the streamwise coordinate parameterized by the 
simulation time. For the planar shear-layer application, the transverse line is the 
coordinate normal to the splitter plate (Kerstein 1989). For the round jet, the 
transverse line is the radial coordinate. Except for modifications needed to 
accommodate the axisymmetric geometry and jet similarity scalings, the model 
formulation is the same as for the shear-layer application. That formulation is 
summarized briefly. Details omitted from the present discussion are provided in the 
aforementioned reference. 

A simulated realization of the scalar field on the transverse line evolves from its 
initial state by means of two concurrent mechanisms. One mechanism, molecular 
diffusion, is implemented deterministically based on Fick’s law. If multiple species 
are incorporated, as in simulations of differential-diffusion effects, the molecular 
diffusivity D, is assigned a different value for each species. The resolution of all 
relevant lengthscales allows this mechanism to be implemented without approxi- 
mation. (For multicomponent diffusion, the appropriate generalization of Fick’s law 
can be incorporated, but this is not implemented here.) 

The other mechanism, convective stirring, is simulated on the transverse line by 
means of a stochastic rearrangement process, rather than by solving a fluid- 
mechanical equation. The rearrangement process is formulated so as to incorporate 
the distribution of length- and timescales specified by the Kolmogorov cascade 
picture of inertial-range turbulence. The rearrangement process consists of a 
sequence of randomly occurring ‘ block-inversion ’ events. Each event consists of the 
random selection of a block (a size-1 interval) along the line, and instantaneous 
inversion of the scalar field within the block. Namely, the scalar field t ( r )  is replaced 
by [ (2ro-r )  for lr-rol < tZ, but is unchanged for \r-ro\ > $2, where ro is the block 
centre. (This formulation, suitable for planar symmetry, is modified in $2.2 for 
application to  axisymmetric flows.) This mirror-image mapping with respect to the 
block centre represents the effect of an individual size-1 eddy on the scalar field. (For 
an illustrative example, see figure 1 of Kerstein 1988.) 
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Reflecting the analogy between blocks and inertial-range eddies, the block size is 
a random variable confined to the range L,  < 1 < L ,  where L is the integral scale and 
L,  is the Kolmogorov scale. The block-size probability density function (p.d.f.) f(1) 
is assigned by requiring that the turbulent diffusivity induced by blocks smaller than 
a given size 1, should be proportional to 13, consistent with the Kolmogorov cascade 
picture. The model analogue of turbulent diffusivity is the diffusivity associated with 
the random walk of a passive marker particle under the influence of a succession of 
block-inversion events. Based on a straightforward random-walk analysis (Kerstein 
1989), the contribution to marker diffusivity due to blocks in the size range (1, l+dl) 
is :Mj’(Z)dl, where h is the rate of occurrence of block-inversion events per unit 
interval along the transverse line. The generalization to a spatially varying event 
rate h(r) for inhomogeneous flow is discussed in $2.2. 

Adoption of the Kolmogorov scaling yields 

where the 1-dependence follows from the scaling and the prefactor is obtained from 
normalization over the range L,  < 1 -= L. 

To express h in terms of physical quantities, an expression for the turbulent 
diffusivity is required. Omitting empirical coefficients of order unity, the turbulent 

(2) 
diffusivity is taken to be 

D,  = vRe = v(L/L,)S, 

where v is the kinematic viscosity and Re is the turbulence Reynolds number, 
specified for the round jet in 92.2. The second equality reflects inertial-range scaling. 
The foregoing results give (Kerstein 1989) 

,=24Y(LJ 5 L3 L,  (3) 

to leading order in LIL, % 1 .  
It is evident that the model is a turbulent mixing analogy ratheir than a 

hydrodynamic model per se, since stirring occurs by means of a rearrangement 
process with no explicitly defined velocity field. Parameters governing the 
rearrangement process must therefore be assigned based on empirically determined 
properties of the flow field, in particular the spatial variation of Re and L ,  as 
elaborated in 92.2. The model thus simulates the evolution of the scalar field under 
the influence of the specified mixing process. Although an empirical specification of 
the gross structure of the flow field is required, empirical coefficients are omitted, for 
example, from ( 2 )  because the intent of the model is to  reproduce and interpret 
measured features and trends, rather than precise numerical values. The objective is 
to ascertain whether those features and trends reflect a generic mixing process or 
whether details of the mixing process are configuration-specific. 

In  this spirit, flow-field properties are assigned in accordance with the similarity 
scalings governing the flow configuration. Near-field effects associated with, for 
example, the potential core of the jet are thus omitted. The model exhibits near-field 
transients reflecting the relaxation of the scalar field to similarity form under the 
influence of the rearrangement process, but these transients do not necessarily 
correspond to measured near-field transients. In  particular, the simulated scalar field 
relaxes to similarity more rapidly than in the actual flow. 

14-2 



414 A .  R .  Kerstein 

FIGIJRE 1.  Schematic illustration of the round jet. 

2.2. Adaption to the turbulent round j e t  
The picture of turbulent round jet development that is adopted here is illustrated in 
figure 1. Fluid issues from a nozzle of diameter D into a quiescent medium (i.e. no 
coflow) of the same density and viscosity. (Note that a subscripted D denotes a 
diffusivity.) Adopting round-jet similarity scalings (Landau & Lifshitz 1959), the 
centreline mean velocity decreases with downstream distance according to 

where u(0) is the nozzle velocity. The scaling factor c and the effective origin xo are 
sensitive to nozzle design, and their measured values vary considerably (Gouldin 
et al. 1986). Here, the representative value c = 0.2 is adopted, and x o / D  is set, equal to  
- l /c = - 5 so that  mean-flow similarity is satisfied for all z > 0. 

Within the turbulent zone, radial variation of the axial component u(z , r )  of the 
mean velocity is neglected, and u ( x ,  r )  is assigned the centreline value u ( x )  specified 
by (4). This and related simplifying assumptions, specified shortly, are adopted with 
the intent of ascertaining whether key features of the mixing process in turbulent jets 
can be reproduced without explicitly incorporating the multidimensional nature of 
the flow field. 

The computational domain represents a radial line corresponding to the range 
-L(x) < T < L ( x ) ,  where L ( x )  is a characteristic scale of the turbulent zone. 
Concretely, the simulated scalar field at any instant is analogous to an instantaneous 
measurement of the scalar field along a radial line. The axial location x of the radial 
line is parameterized by the computational time t according to 

dx - = u ( x ) .  
dt 

Based on the mapping defined by (4) and (5), x and t arc henceforth used 
interchangeably. 

Similarity requires linear growth of the characteristic scale L ( x )  of the turbulent 
zone, namely 

Here, C(x)  is interpreted both as the integral scale of the turbulence (i.e. the size of 
L ( x )  = c ( x - 2 , ) .  (6) 
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the largest eddies) and as the local width of the vortical zone. The former 
interpretation leads to the identification of L(x)  as upper bound L on the range of 
block sizes, as defined in (1). The latter interpretation motivates the specification of 
the block-inversion event rate h(r) ,  defined above (1) .  Blocks may be viewed as eddies 
with vorticity concentrated at  the block centres. Therefore the block centres are 
confined to the vortical zone, namely the radial interval -& < r < 5. Within this 
zone, radial variation of the turbulent diffusivity is neglected, so A(r) has the value 
given by (3) within the vortical zone, and is zero outside that zone. 

As a consequence of this formulation, the zone to which blocks are confined is twice 
as large as the zone to which their centres are confined. For the shear-layer 
application, this formulation was motivated by the experimental observation 
(Brown & Roshko 1974) that the vorticity thickness of a planar shear layer is roughly 
half the visual thickness. Consistent with the present objective of achieving a generic 
description of turbulent mixing in free-shear flows, this aspect of the shear-layer 
formulation is adopted here. The prevalence of large eddies capable of entraining 
parcels of fluid well beyond the vortical zone is a feature common to free-shear flows, 
although their ‘ coherent structure ’ and related properties are configuration- 
dependent. 

It is instructive to express (3) in terms of Re (based on (2)), L, and the large-eddy 
turnover time T = L/v‘,  where v’ is the r.m.s. fluctuation of the radial velocity 
component. It is appropriate to express turbulence quantities in terms of that 
component since the model incorporates only the radial fluctuations. Taking D, = 
v’L in (2), (3) becomes 

24 5 
h = -Rea. 

5L7 (7)  

This expression indicates that i t  is convenient to scale length and time by L and 7 ,  

respectively. Both of these quantities vary with x. In particular, 7, which may be 
expressed as L2/D,  = L2/(vRe),  is proportional to L2 since jet similarity requires Re 
to be constant. 

For the self-similar jet, the jet Reynolds number Rejet = u(x)L(x) /v  is likewise 
constant. For purposes of comparison to measurements involving jets which 
typically are not self-similar a t  small x/D, the jet Reynolds number is taken to be 
Rejet = u(O)D/v.  The measurements of Wygnanski & Fiedler (1969) indicate that the 
ratio d / u  is roughly 0.25 along the jet centreline in the similarity region. Therefore 
the turbulence Reynolds number is taken to be Re = $Rejet. 

The x-dependence of the axial component u of the mean velocity implies a mean 
radial flow, by continuity. Expressed in cylindrical coordinates, continuity requires 
that the radial mean velocity component satisfy 

av au -+- = 
r i3r ax 

Taking u to be independent of r ,  as assumed earlier, (8) gives 

This mean radial flow is incorporated into the model by stretching the scalar field a t  
a rate prescribed by (9). Stretching is implemented deterministically by means of 
dilatation events at regular time intervals. Each event involves the reassignment of 
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the scalar value of each computational cell to the cell or cells specified by the 
dilatation factor for that event. (Since v(r,x) is proportional to r for given x, the 
computational domain is stretched by the same multiplicative factor for all r . )  Owing 
to discretization of the computational domain, the scalar value in a given cell may 
be reassigned to more than one cell. (An alternative approach involving interpolation 
is not adopted because it would introduce numerical diffusion, causing a spurious 
enhancement of molecular diffusion.) By thus incorporating radial flow, the 
algorithm conserves total scalar flux, corresponding to the quantity 

nu(x) I ~ I  t ( r ,  $1 dr  
-m 

in the simulation. For this quantity to  be independent of x, the integral over the 
scalar field must increase as l/u(x). The stretching process has precisely this effect. 

Since the largest allowed block size is L(x) and the largest allowed radial 
displacement of a block centre is $L(x), the transverse range subject to block 
inversions is -L(z )  < r < L(x). Therefore the computational domain is limited to 
this range. Taking the scalar c(r ,  t )  to  represent the nozzle-fluid mixture fraction, the 
initial condition for a simulated realization is [ ( r ,  0 )  = 1 for (rl < la, [ ( r ,  0) = 0 for 
Irl > 18. As L(x) increases, the computational domain widens, with a scalar value 
t = 0 assigned to newly incorporated cells, representing newly entrained fluid. 
Although in principle the molecular diffusion and stretching processes can transport 
nozzle fluid to r values beyond the specified computational domain, computed results 
do not change significantly when a larger domain is chosen, indicating that the 
specified domain is adequate. 

Thus far, axisymrnetry has been explicitly incorporated into the model only in the 
formulation of the continuity condition, (8), that determines the radial flow. The 
molecular diffusion process is implemented in accordance with axisymmetry by 
likewise formulating Pick’s law for E(r, t )  in cylindrical coordinates, namely 

Equations ( 8 )  and (10) both reflect the fact that  the volume of the annular region 
rl < r < r l  + dr, x1 < x < xl + dx is 2 4 ~ 4  dr/dx, implying that a given scalar con- 
centration E(rl) in a cell of width dr corresponds to a larger volume element of the 
scalar a t  larger Ir,l. 

This consideration must also be reflected in the block-inversion process in order to 
conserve the scalar. The definition of a block-inversion event in $2.1 is modified as 
follows to incorporate axisymmetry. Denoting the block centre and block size as ro 
and 1, respectively, the scalar value a t  ro - y (where 0 < y < $Z) is assigned to location 
ro+y only if ~ r o - - y ~ / ~ r 0  +yI > p ,  where the value 0 < p < 1 for a given event is 
randomly selected (i.e. p is uniformly distributed over (0 , l ) ) .  I n  the ensemble 
average, this procedure corresponds to exchange of equal volume elements, thus 
conserving the scalar in the mean. For instance, if lro-yl < (r,+yl, then the mean 
volume-element transfer per unit azimuthal angle from location r 0 - y  to  location 
ro+yis(ro+y(Prob[(ro-yyl/(ro+y( > pldrdx. Basedon thedefinitionofp, thisequals 
(ro - yI dr  dx, which is equal to the volume-element transfer per unit azimuthal angle 
from ro-t-y to ro -y .  

Satisfying scalar conservation in the mean rather than in each inversion event is 
a reasonable representation of scalar field measurements along a radial line. This is 
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because the measured scalar is conserved instantaneously when integrated over the 
entire flow field, but not when integrated over a control volume that exchanges 
material with other parts of the flow field. 

Alternative, deterministic rules that conserve the scalar instantaneously along the 
radial line can be formulated, but they introduce undesirable artifacts. For instance, 
block inversion can be accompanied by a nonlinear transformation (i.e. longitudinal 
stretching and compression) of the scalar field within the block, specified by requiring 
that r1 dr, = r2 dr, for an exchange of scalar values at respective locations rl and r2. 
This approach causes systematic changes in the radial derivative of the scalar, 
depending in a complicated way on ro and 1. Such an artifact is particularly 
undesirable in a mixing model in which molecular-diffusive fluxes are driven by 
concentration gradients. This and related approaches are therefore deemed 
inappropriate. 

2.3. Implementation 

The concurrent processes of dilatation, molecular diffusion, and block inversion 
(viewed as a random point process in the time domain) are defined on a one- 
dimensional continuum. For computational purposes, the radial coordinate is 
discretized into cells small enough so that the spatial discretization does not have a 
significant impact on the computed results. Adequacy of the spatial resolution is 
verified by recomputing selected cases a t  higher resolution. In  the computations 
reported here, the cell size Ar ranges from 0.001 250 for liquid a t  high Re to 0.0050 
for gas at low Re. Molecular diffusion is implemented as a finite-difference solution of 
(10) with computational time step At = 0.2(Ar)2/D,. For multispecies applications, 
At is assigned based on the largest of the species diffusivities. 

Spatially resolved statistics of the fluctuating scalar field are gathered by running 
a number of realizations for each condition, parameterized by Re and Sc (with more 
than one Sc value for multispecies cases). Run-to-run variation of [ ( r ,  t )  reflects the 
random assignment of the times, locations, and p-values (defined in $2.2) of the 
block-inversion events. The reported results are based on a minimum of 200 
realizations for each condition. 

It should be noted that the only empirical inputs to the model are the similarity 
scaling factor c = 0.2 and the relationship Re = $Rejet. 

3. Scalar mixing 
3.1. Mean and instantaneous projles 

The cases that were computed are indicated in table 1. The range of x/D for which 
computed results are presented is shown for each case. Except for the differential- 
diffusion cases discussed in $4, all plotted results for a given case are denoted by the 
same symbol, irrespective of the x/D-value. For a given case, collapse of the data 
with respect to the radial similarity coordinate 7 = r/(x- xo) indicates similarity 
with respect to x/D. Similarity with respect to  Re or Sc is indicated by comparisons 
among cases. 

The cases Rejet = 5000 and Rejet = 20000 are of greatest practical interest because 
they span the range of the experimental work most relevant for data comparisons. 
The cases Rej, = 100000 for air and Rejet = 100 for water are included because their 
Pkclet numbers (Pe) are almost equal, so they allow a Sc comparison with Pe effects 
essentially eliminated. The case of Rejet = 100 for air corresponds to  Pe so low that 
the mixing field is qualitatively different from the other cases. Results for this case 
are presented only in figure 7 in order to address a specific issue. 
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Case Air Water Hydrogen, propane 
S C  0.7 600 0.18, 1.2 

100 10-20 ( + )  10-20 ( x ) - 

5000 10-30 (0) 10-20 (. ) 5-20 
20000 10-20 (0) 10-20 (0) 5-20 Re,et 

100000 5-10 (A) - - 

with plotting symbols in parentheses where applicable. 
TABLE 1 .  Cases computed. For each case, the x /D  range represented in the figures is shown, 

1 .O 

x5,, 
K 

0.5 

0 0.1 0.2 

11 = - x,) 

FIGURE 2. Scaled mean mixture fraction xox. v ) / K ,  where x = (z--z,)/D, versus radial similarity 
coordinate 7 = r / ( x - ro ) .  Symbols are defined in table I .  Solid curve: measurements by Dowling 
(1988). Dashed curve : conditioned measurements by Papantoniou (1985). 

Figure 2 demonstrates the collapse of the mean-mixture-fraction radial profile to 
the similarity form ( ( r ,  x) = K g ( s ) / x  for the various cases. Here, x = (x-x , ) /D is the 
axial similarity coordinate. Similarity of the computed mean profiles is by no means 
surprising. It may in fact be regarded as a consistency check on the model because 
similarity scaling of the stirring field was introduced explicitly. 

The constant K is 3.5 for the computed results. I ts  experimental value based on an 
average of Dowling’s (1988) measurements (solid curve) in gas at Rejet = 5000 and 
16000 is 4.9. (The measurements indicate a slight but statistically significant Re- 
dependence of K that is as yet unexplained.) Mean profiles have been measured 
previously by many workers, as cited by Dowling. His measurements are emphasized 
in the ensuing data comparisons because he has achieved the best spatial resolution 
to date relative to the scalar fluctuation lengthscale. (Measurements represented by 
the dashed curve are discussed shortly.) 

Unlike Dowling’s measured profile, the computed profile exhibits a plateau near 
the centreline and an abrupt transition to rapid fall-off. To some extent, these 
features are artifacts of the assumed step-function radial dependence of the 
inversion-rate parameter A ,  which was carried over from the planar-shear-layer 
formulation (Kerstein 1989). A more gradual radial fall-off of A,  reflecting the radial 
variation of turbulence intensity in round jets, would have smoothed these features 
somewhat. Nevertheless, the shape of the computed profile may be qualitatively 
valid, based on the following considerations. 

Despite the contrast between the measured and computed mean profiles, 
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FIQURE 3. Simulated instantaneous radial profiles of scaled mixture fraction g = x [ ( ~ ) / K  at 
x = 25 for air (Sc = 0.7) a t  Relet = 5000. 

71 = r/(x--xg) 71 = r/(x-xxo) 
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FIGURE 4. Simulated instantaneous radial profiles of scaled mixture fraction g at x = 25 for 
water (Sc = 600) at Rejet = 5000. 

= r / ( x - x x o )  ?I = r / ( x  - xa) 
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T T 

FIGURE 5.  Instantaneous radial profiles of scaled mixture fraction g measured by Dahm (1985) 
at x = 300 in water (Sc = 000) at Rejet = 5000. (Reproduced with permission.) 

instantaneous scalar profiles from the simulations exhibit qualitative features 
consistent with measured instantaneous profiles. Simulated instantaneous profiles 
are shown in figures 3 and 4 for air and water, respectively. Instantaneous profiles 
measured in water (Dahm 1985; Dahm & Dimotakis 1987) are shown in figure 5. 
Computations and measurements both yield instantaneous profiles that exhibit 
fluctuations about a roughly constant level near the centreline, with relatively sharp 
drops at the instantaneous boundaries. This ‘ step-function-plus-noise ’ picture is 
confirmed by recent instantaneous-profile measurements by Papantoniou & List 
(1989) in a liquid jet and by R. W. Dibble (1989, personal communication) and van 
Cruyningen, Lozano & Hanson (1989) in air jets. 

In a study of scalar mixing in planar jets, Uberoi & Singh (1975) obtained 
instantaneous transverse profiles consistent with this picture. They noted the 
apparent discrepancy between the trendless noise in the mixed zone and the bell- 
shaped mean scalar profiles that they obtained, similar in appearance to Dowling’s 
profile in figure 2. Conjecturing that the bell-shaped mean profile reflects transverse 
displacements of the jet rather than a mixing motion, they formed a conditioned 
mean profile with the centreline referenced to the instantaneous centre of the mixed 
zone, thereby correcting for transverse displacements. The conditioned profile they 
obtained was flat for < 0.1, breaking sharply to a linear fall-off. (For the planar 
jet, 7 = y/(x-x,), where y is the transverse coordinate.) 
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Imaging studies (Dimotakis, Miake-Lye & Papantoniou 1983) have shown that 
large-scale motions occur also in round jets a t  high Re. Therefore Papantoniou (1985) 
performed the analogous conditioning on instantaneous radial profiles measured in 
a round jet, obtaining the conditioned mean profile shown in figure 2 (dashed curve). 
The conditioning flattens the profile only slightly, in contrast to the planar-jet result. 
Papantoniou conjectured that conditioning based on the instantaneous centres of 
transverse two-dimensional images of the scalar field would yield a flatter profile. 
(For the round jet, snapshots along a transverse line cannot be corrected for the 
component of displacement in the orthogonal transverse direction.) 

Transverse displacements of the jet are not included in the linear-eddy model 
because they do not contribute to mixing. (Mixing is induced by relative motion of 
fluid elements, but not by overall fluid motion referenced to Euclidean coordinates.) 
Therefore the computed mean profile ideally should be compared to fully conditioned 
profiles based on transverse two-dimensional images. Although such measurements 
have not yet been performed, recent advances in the planar imaging of scalar fields 
(van Cruyningen et al. 1989) should render them feasible in the future. 

The key point is that the computed results of figures 2 4  are consistent with the 
emerging picture of the turbulent jet mixing field. Namely, a spatially uniform, 
partially mixed state is formed within the interior of the jet, with a fairly abrupt 
transition to an unmixed state near the edge of the vortical zone. 

3.2. Fluctuation statistics 
Ideally, radial profiles of computed scalar fluctuation statistics should likewise be 
compared to measured profiles conditioned to correct for transverse displacements. 
Bearing this caveat in mind, the computed results are compared here to the 
available, unconditioned fluctuation statistics that have been measured. As noted 
earlier, the comparisons serve to interpret overall trends, especially Sc effects, rather 
than detailed features. 

The radial profile of the r.m.s. fluctuation of mixture fraction, figure 6, exhibits 
similarity analogous to figure 2. The occurrence of the peak r.m.s. fluctuation where 
the slope of the mean profile is greatest is a familiar feature, reproduced by many 
modelling approaches (Kerstein 1988). 

The computed streamwise dependence of the centreline fluctuation intensity c/c 
is shown in figure 7. It is apparent that the fluctuation intensity exhibits a x- 
dependence whose convergence to a far-field asymptote is slow. Although this 
extended transient has been observed in many experiments, the high-resolution 
measurements of Dowling (1988) indicate that the observed transient may have been 
an artifact of insufficient near-field spatial resolution. In  gas, Dowling obtains a far- 
field asymptote beyond x = 20, with measured values of 0.23 and 0.24 for Rejet = 
5000 and 16000, respectively. 

In figure 7, distinctive transient behaviour is exhibited for the case of liquid at  
Rejet = 20000. This is the case with the highest Pe and therefore the slowest onset of 
molecular-diffusive effects. The consequent slow establishment of a convective- 
diffusive balance is responsible for the high near-field fluctuation intensity in figure 
7,  and for imperfect compliance with similarity scaling in several subsequent figures. 
The degree of non-compliance is different for different fluctuation statistics (e.g. note 
the good collapse to similarity in figures 2 and 6), consistent with the experimental 
observation that different statistics relax to similarity at different rates (Wygnanski 
& Fiedler 1969). 

Several features of the parametric variation of the computed fluctuation intensity 
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71 = r / (x -xo)  

FIGURE 6. Scaled r.m.s. fluctuation of mixture fraction r(x, y)/r(x, 0) versus radial similarity 
coordinate 7. Solid curve : measurements by Dowling (1988). 

1.5 

1 .O 

0.5 

0 

x = (x -x , ) /D  

defined in table 1 .  
FIGURE 7. Fluctuation intensity of the centreline mixture fraction 

are noteworthy. For high Rejet, there is no discernible dependence on Rejet and only 
a slight dependence on Sc. To further investigate the dependence on Sc, computations 
were performed for Rejet = 100, despite the physical unrealizability of fully developed 
turbulent flow a t  this value. Curiously, reduction of Rejet causes a reduction of the 
fluctuation intensity in air but an increase in water! 

The computed behaviour in air can be understood based on an analogy to 
measured mixing rates in planar shear layers (Broadwell & Dimotakis 1986). A 
normalized measure of mixing is found in those experiments to decrease with 
increasing Re in air hut remain constant with increasing Re in liquid. 

The Re-dependence in air is interpreted as a mixing-rate augmentation whose 
impact decreases with increasing Re. This augmentation is attributed to molecular- 
diffusive mixing in the 'internal superlayers ' (Effelsberg & Peters 1983) surrounding 
parcels of free-stream fluid newly entrained into the mixing layer. The narrow 
regions of large scalar gradient in the lower-left snapshot of figure 3 are realiz- 
ations of internal superlayers in the simulation. According to the Broadwell- 
Breidenthal-Mungal (BBM) picture (Broadwell & Breidenthal 1982 ; Broadwell & 
Mungal 1988; Broadwell 1988, 1989), the internal-superlayer contribution to  the 
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mixing rate is governed by the large-eddy length- and timescales, and is predicted to 
vanish as (Re&-;. This contribution augments the mixing based on the classical 
picture of complete lengthscale breakdown followed by rapid diffusive homogeniz- 
ation. The classical picture yields a Re-independent normalized mixing rate in 
the similarity regime. 

The low-Re effect indicated by the computed results for the gaseous jet may be 
analogous to the internal-superlayer contribution to gas mixing in shear layers. 
Xamely, mixing enhancement leads to reduction of scalar fluctuations, so the two 
observations may reflect the same mechanism. In this regard, it is noteworthy that 
the shear-layer effect was reproduced by the linear-eddy model as applied to that 
flow (Kerstein 1989). 

The computed trend for the jet in water can also be interpreted in the context of 
the BBM picture. The computed trend may reflect the inability of the low-Re stirring 
field rapidly to homogenize the entrained fluid upon completion of lengthscale 
breakdown. The criterion for rapid homogenization (relative to the lengthscale 
breakdown time) is Re % (lnXc)2 (Batchelor 1959; Broadwell 1988, 1989). For Sc = 

600 this requires Re % 40, which should be compared to the turbulence Reynolds 
number Re = 25 for Rejet = 100. Thus, the results for both water and air are 
consistent with the BBM picture. It should be noted here as previously (Kerstein 
1989) that this consistency is an inference based on the computed trends; the 
assumptions of the BBM picture are not built into the linear-eddy model. 

Thus, a large Sc effect is predicted only a t  Rejet too low to correspond to the fully 
developed turbulence picture. Based on the results shown in figure 7 ,  there is also the 
possibility of an observable effect a t  Rejet of order lo4. Measurements in water jets 
(Dahm 1985; Papantoniou 1985) suggest such an effect, but are not definitive. The 
observation (Drake, Bilger & StBrner 1982) that the fluctuation intensity in a 
Rejet = 11 200 hydrogen-air jet diffusion flame was larger for seeded-particle 
(Sc % 1) than for species-concentration (Sc < 1) measurements has been interpreted 
by Bilger (1989) as a Sc effect in that flow. These experimental results, as well as the 
computed results of figure 7 ,  indicate that additional high-resolution measurements 
over a range of Re- and Sc-values are desirable. 

A noteworthy feature of the BBM picture is the prediction that dependences of the 
mixing rate on Re and Sc reduce to a dependence on P e  = ReSc = DT/D,,  provided 
that the aforementioned criterion for rapid homogenization is obeyed. It is shown in 
the ensuing discussion that the present formulation generally exhibits this reduction, 
with deviations mainly at low Pe. 

3.3. Other scalar properties 
A key property governing the scalar mixing rate is the scalar dissipation W,(V()'  
(Bilger 1976). To estimate the time-average value of this quantity from time records 
of 5 measured a t  a fixed location in a gas jet, Dowling (1988) adopts __ Taylor's frozen- 
flow hypothesis to obtain a(/&- and assumes isotropy to obtain = 3(a[/ar)2. 
Adopting the notation 5 = (l&)2(a(/&)2, the similarity variable that he uses to plot 
his measurements can be expressed as log , , , (24~*~,Pe~~~) ,  where Pejet = ScReje,. His 
measured results for Rejet = 5000 and 16000 collapse to a similarity form represented 
by the solid curve in figure 8, with roughly 20% scatter about this curve based on 
x /D  ranging from 20 to 90. 

The computed results for this quantity, also shown in figure 8, exhibit analogous 
similarity. Although some dependence on Sc and Rejet is apparent, it is a mild 
dependence in view of the thousandfold variation of each of these parameters among 
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FIQURE 8. coordinate 1. Solid 

1 .o 

0 0.1 0.2 
11 = r / (x- -xo)  

FIGURE 9. Unmixed-fluid probability, Prob [E  < Er;,,,/20], where Erer = K / X ,  versus radial similarity 
coordinate 7. Symbols are defined in table 1 .  Solid curve: measurements by Antonia et al. (1975). 

the various cases, with Pejet ranging from below lo4 to above lo'. The scalar 
dissipation has not yet been measured in liquid jets, so the similarity with respect to 
Sc is as yet unverified. 

A scalar property that reportedly (Dahm 1985) exhibits significant Se sensitivity 
in turbulent jets is the probability of observing pure ambient fluid (5 = 0) at  a given 
location. The solid curve shown in figure 9 represents measurements in air at 
ReJet = 10000 by Antonia, Prabhu & Stephenson (1975). (That and other studies 
refer to the probability that t = ! = O  as the intermittency.) That study as well 8s 
Dowling's (1988) measurements in gas indicate negligible penetration of ambient 
fluid to the centreline. In contrast, Dahm (1985) finds significant (probability 0.13) 
penetration to the centreline in water a t  Rejet = 5000. 

The operational definition of unmixed fluid suggested by Dahm is adopted here, 
namely fluid for which 6 is less than 5 %  of a reference value. The reference value is 
chosen to be the centreline similarity value K / X ,  where K = 3.5 as noted in $3.1. The 
computed results, shown in figure 9, exhibit a significant Sc-dependence for Rejet of 
order lo4. For the case of water a t  Rejet = 20000, the sequences of points converging 
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Solid curve : measurements by Namazian et al. (1988). 
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FIQURE 10. Correlation of and g, where 5 = ( ~ $ ) * ( a ~ / a ~ ) ~ ,  versus radial similarity coordinate 7. 

to the better-collapsed results for water a t  Rejet = 5000 reflect transient relaxation 
with increasing x, as discussed in $3.2. 

Comparison of water a t  Rejet = 100 and air a t  Rejet = lo5, cases with almost the 
same Pejet, suggests that the Sc-dependence does not reduce to a dependence on Pejet. 
A countervailing consideration is that the former case does not satisfy the criterion 
($3.2) for rapid homogenization, so this may not be a legitimate comparison. 
Nevertheless, it can be stated that similarity with respect to the unmixed-fluid 
probability is predicted to be less robust than with respect to, for example, the 
computed scalar dissipation (figure 8). 

A scalar property whose computed Sc-dependence does appear to reduce to a 
dependence on Pejet is the correlation coefficient (i.e. the normalized covariance) of 
6 and its squared radial derivative 6. The computed results, shown in figure 10, 
indicate close correspondence of the correlation profiles for water at Rejet = 100 and 
air a t  Rejet = lo5. The transient relaxation for the case of water at Refet = 20000 is 
again evident. 

The solid curve is a correlation profile measured by Namazian, Schefer & Kelly 
(1988) in air for Rejet = 7000. Several caveats should be noted regarding comparison 
to the measurements. First, the measured correlation involves not 6 but the scalar 
dissipation, computed from planar scalar maps using an approximate model. Second, 
all relevant lengthscales may not have been resolved. Third, the correlation profiles, 
measured a t  x / D  ranging from 5 to 17, exhibited significant departures from 
similarity, indicating near-field influences and possible effects of marginally adequate 
spatial resolution. The profile measured a t  x / D  = 5 is plotted in figure 10 because it 
is in best agreement with the computations. For these reasons, the data comparison 
should be regarded as a demonstration of the physical plausibility of the computed 
results rather than a validation. 

The shape of the correlation profile largely reflects the radial variation of the 
unmixed-fluid probability. Unmixed fluid tends to introduce positive correlation 
because both the mixture fraction and its derivative are small in regions with low 
concentrations of nozzle fluid, reflecting bhe incomplete lengthscale breakdown of 
newly entrained fluid parcels. 
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FIGURE 11. Computed radial profiles of mean and r.m.s. differential diffusion for a jet of H, and 
propane into air at (a ,  b )  Re,et = 5000 and (c, d )  Relet = 20000. -.-.- , x / D = 5 ;  -, 10; 

, 15; ...''.., 20. 

4. Differential diffusion 
The foregoing comparisons of measured and simulated features of scalar mixing 

have motivated some physical hypotheses concerning the mixing process. Although 
the computed results are intuitively reasonable and consistent with measurements, 
the available scalar mixing measurements are not sufficiently comprehensive or 
reliable to provide a stringent test of predicted Sc effects. Recently reported 
(Kerstein et al. 1989) differential molecular diffusion measurements in a turbulent jet 
provide such a test. Differential diffusion is an effect whose occurrence at  high Re is 
an unambiguous, quantitative indicator of S c  sensitivity. 

The measurements were performed in a jet of 90% H, and 10% Freon-22 (on a 
molar basis) issuing into air with Rejet = 20000. (Freon-22 is CHClF,.) The Rayleigh 
scattering properties of this gas mixture permitted a direct measurement of the 
quantity z = tF-tH, where tF and tH are the mixture fractions of Freon and H,, 
respectively. Here, mixture fraction is defined as species mole fraction normalized by 
the species mole fraction in the nozzle fluid. (Bilger & Dibble (1982) and others define 
mixture fraction in terms of mass fractions rather than mole fractions, an approach 
that is advantageous for modelling but does not yield a unique relationship between 
differential diffusion and t.he Rayleigh signal.) 

In the computations, these species are treated as passive scalar contaminants, 
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FIGL-RE 12. Measured radial profiles of r.m.8. differential diffusion for a jet of H, and Freon into 
air at Rejet = 20000 (Kerstein et al. 1989). -, x /D  = 10; ....., 20; -.-.- , 30. 
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z at g = 0.10 z at 71 = 0.10 

FIGURE 13. Computed centreline (7 = 0) and off-axis (7 = 0.1) probability density functions of 
differential diffusion z for a jet of H, and propane into air a t  (a ,  b)  Relet = 5000 and (c, d )  Rej,, = 
20 000. 
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FIGURE 14. Measured probability density functions of differential diffusion z at x/D = 10 for a jet 
of H, and Freon into air at Rejet = 20000, for r /D  values (a) 0, ( b )  0.9, and (c) 1.6 (Kerstein et al. 
1989). 

neglecting the possible dynamical consequences of density fluctuations and non- 
Fickian molecular transport. Therefore the model is most directly applicable to an air 
jet with trace concentrations of H, and Freon, although it  is applied here to 
measurements involving high concentrations, especially of the latter. 

As indicated in table 1, computations were performed based on the respective Sc 
values for H, and propane (rather than Freon). This choice facilitates comparison to 
a previous (Bilger & Dibble 1982) differential-diffusion analysis that  adopted 
H,-propane as a test case. 

Profiles of z and z’ computed for Rejet = 5000 and 20000, respectively, are shown 
in figure 11. Comparison of these two cases indicates that the mean profiles scale 
inversely with Rejet, while the r.m.s. profiles are much less sensitive to Rejet. These 
features are also obtained by Bilger & Dibble (1982), based on estimates of the 
leading terms in their gradient-transport model. (Namely, generation of mean z scales 
as the higher of the two molecular diffusivities. Mean z is dissipated by turbulent 
mixing, so z-dissipation scales as the turbulent diffusivity, yielding a balance level 
z -Re& Fluctuations of z are generated and dissipated by turbulent mixing and 
hence the r.m.s. profiles remain finite a t  high Rejet.) The profile shapes that they 
obtain are likewise comparable, except that  their mean profiles peak a t  the 
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n 
FIGURE 15. Schematic interpretation of the asymmetry of the probability density function of 
differential diffusion. (a) Initial radial profile of mixture fraction for both species, resulting from the 
transport ofa  packet of nozzle fluid into the outer fluid. ( b )  Subsequent profiles of mixture fraction 
for the slow-diffusing species (heavy curve) and the fast-diffusing species (light curve). 

centreline. The key difference between the predictions is that Bilger & Dibble (1982) 
obtain mean values that typically exceed the r.m.s. fluctuations by a factor of 2 or 
more for Rejet of order lo4, while the present computations yield mean values much 
smaller than the r.m.s. fluctuations. 

The present computations are in good agreement with the measurements by 
Kerstein et al. (1989). Agreement with measured fluctuation profiles is indicated by 
comparison of figure 11 to measured profiles shown in figure 12. Measured profiles of 
the mean differential diffusion never exceeded the measurement noise threshold of 
0.007. Consistent with this observation, the computed mean profiles for Rejet = 
20000 fall well below this threshold. 

Insight into the mechanism of differential diffusion is gained by examination of 
spatially resolved p.d.f.’s of z .  An interesting feature not revealed by examination of 
the mean and r.m.s.-fluctuation profiles is the asymmetry of both computed (figure 
13) and measured (figure 14) p.d.f.’s, especially noticeable at large radial offsets. 

A mechanistic interpretation of this observation is schematically illustrated in 
figure 15. The initial scalar profile in that figure represents a parcel of fluid that has 
been transported by a large eddy from the vicinity of the centreline to its present 
location near the edge of the jet. The parcel contains high concentrations of both the 
fast- and the slow-diffusing species, while the surrounding fluid has neither. After a 
time interval short compared to convective times, molecular diffusion has spread the 
fast-diffusing species over a broader range than the slow-diffusing species. If the 
original parcel is smaller than the zone now containing the fast-diffusing species, then 
the scalar profiles develop as in figure 15. Namely, a small zone has a large excess of 
the slow-diffusing species, corresponding to large, positive z ,  while a large zone has 
a small excess of the fast-diffusing species, corresponding to small, negative z .  This 
implies a p.d.f. that is long-tailed with respect to positive z .  

This interpretation implies a subtle relationship between flow-field properties 
(sizes of convected parcels, convection times, etc.) and statistical properties of the 
quantity z .  The possibility that measured properties of z provide useful information 
about the flow field, beyond the specific issue of scalar mixing addressed here, merits 
further investigation. 
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5. Two-source correlation 
Many of issues addressed thus far with regard to jet mixing are likewise pertinent 

to other turbulent flows. In  a previous application of the linear-eddy approach 
(Kerstein 1988), some of these issues were considered with reference to scalar mixing 
in grid turbulence. The next issue that is considered concerns an interesting 
observation in grid turbulence by Warhaft (1984) that may be pertincnt to jets and 
other free-shear flows. 

Warhaft measured the fluctuation statistics of the thermal field downstream of one 
or more parallel heated wires behind a grid in a wind tunnel. The wires were fixed in 
a plane transverse to the mean flow. By analysing measurements involving one and 
two wires, respectively, Warhaft achieved the thermal analogue of t’he following 
measurement. I n  the two-wire configuration, suppose that the wires are sources of 
distinct, equal-diffusivity species A and B, respectively. Downstream of the wires, 
Warhaft obtained, in effect, the spatially resolved correlation coefficient p = 
cov (eAeB)/[var (cA) var (cB)]a in the plane equidistant from the wires. As a function of 
streamwise distance x from the wires, Warhaft observed that p exhibited complicated 
behaviour in the near field, followed by relaxation to an apparent asymptote less 
than unity. (The observed asymptote was not definitive due to the limited 
streamwise range of the measurements.) Sawford (1985) showed that Durbin’s (1980) 
particle-dispersion model reproduces the qualitative effect, including the dependence 
of the asymptote on the ratio of the wire separation to the turbulence integral scale. 

A non-unity asymptote would imply incomplete mixing of A and B in the far field. 
This effect, if observed likewise in jets, would have the following implication. The 
fluctuation intensity (figure 7 )  is presumably maintained at a constant level by the 
continual entrainment of unmixed fluid into the vortical zone. Warhaft’s effect 
would imply that two entrained fluid parcels would not fully mix with each other, let 
alone with fresh fluid, indefinitely far downstream. Incomplete mixing is possible 
owing to the continual transverse spreading of the vortical zone, causing some 
separation between convected elements of the respective parcels to be maintained 
despite the stirring-induced lengthscale reduction. 

To test this possibility computationally, simulations were run with two distinct 
equal-diffusivity scalars A and €3 with respective initial conditions <A = 1 for 
0 . 9 9 ( 9 )  < Irl < 3, otherwise zero, and cB = 1 for Irl < (0.02)@4, otherwise zero. 
This initial condition represents a nozzle consisting of three concentric rings, with 
pure ambient fluid (containing neither A nor B) issuing from the intermediate ring, 
as illustrated in figure 16. The stated initial conditions correspond to inner and outer 
ring cross-sections each equal to  2% of the total nozzle cross-section. Other 
configurations would also be suitable, and could readily be simulated for comparison 
to measurements. 

Two cases were computed, air (Sc = 0.7) and water (Sc = 600), both at  Rejet = 
5000. Computed radial profiles of p are shown in figure 17. It is apparent that the 
results for gas are not yet converged to  similarity form at small 7. Transient 
relaxation at the centreline is shown in figure 18. For liquid, p is converging to a value 
greater than zero, but much less than unity. (Note the expanded vertical scale.) The 
asymptote for gas is not evident. Nevertheless, the liquid results demonstrate that 
the asymptote can be less than unity, and the comparison of cases indicates a 
significant Se effect. 

Consideration of limiting cases provides a frame of reference for interpreting the 
results. In the absence of molecular diffusion, the correlation must always be 
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FIGURE 16. Kozzle cross-section for the proposed two-source experiment (not to scale). Tracer 
species are A and B, respectively. 
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FIGURE 17. Radial profile of the correlation of species A and B, computed for 
configuration of figure 16. Symbols are defined in table 1 (but the x / D  range is 1&20 for 
as liquid). 
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negative because A and B never comingle at a point. Positive values for liquid as well 
as for gas thus indicate a significant influence of molecular diffusion in both cases. In  
the strongly diffusive limit, i.e. small Pe, the correlation tends to unity. Figure 17 
indicates values near unity at the edge of the jet. This may be interpreted as the 
effect of local Pe.  Relatively few block-inversion events subsume the region near the 
edge so Pe is effectively smaller there. 

Except near the edge, the far-field correlation predicted for the jet is lower than 
that measured by Warhaft. This is to  be expected, both because Pe is larger in the 
present case, and because dilution by fluid entrainment is more effective in the 
axisymmetric configuration than in Warhaft’s line-source configuration. 

Near-field behaviour depends on the source configuration. Figure 18 indicates that 
the asymptote is approached from below, consistent with Warhaft’s measurements 
and his inference that molecular diffusion does not affect p in the near field owing to 
the physical separation of the sources, so the near-field correlation is negative. The 
relative insensitivity of p to Sc in the near field, indicated in figure 18, is also 
consistent with this inference. 
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FIGURE 18. Axial profile of the centreline correlation of species A and B, computed for the 
nozzle configuration of figure 16. (Kote the expanded vertical scale.) 

The approach to the asymptote from below is also predicted by Durbin’s (1980) 
model (Sawford 1985). A difficulty with that analysis is its prediction of positive 
values of p in the absence of molecular diffusion, reflecting the absence of a 
mechanistic distinction between molecular diffusion and fine-scale stirring. A 
discussion of this and subsequent particle-dispersion formulations in this regard is 
provided elsewhere (Kerstein 1988). 

Returning to the computed far-field behaviour, the key inference is that  mixing of 
fluid elements in the jet interior may be incomplete, irrespective of the time available 
for mixing. For given Re, the ultimate extent of mixing is predicted to depend on Sc. 

6. Discussion 
It has been demonstrated that a formulation of the linear-eddy model 

incorporating the geometry and similarity scalings of the self-preserving round jet 
reproduces many aspects of the scalar fluctuation statistics measured in turbulent 
jets. The present approach may be viewed as complementary to approaches, 
surveyed by Pope (1985) and Bilger (1989), that undertake the more ambitious task 
of simultaneously predicting the turbulent flow field and the scalar field. Those 
approaches lead to models that are more complicated overall than the present 
formulation, but embody a less detailed representation of small-scale mixing. 
Consequently, no one model has previously addressed the wide range of Sc as well as 
Re and the wide variety of mixing properties considered here. 

A general feature of the results and data comparisons presented here is the collapse 
of the Sc- and Re-dependences to a dependence on P e  = ScRe in most cases. With 
regard to this and other features, i t  has been noted that the linear-eddy model is 
generally consistent with the Broadwell-Breidenthal-Mungal (BBM) picture of 
scalar mixing in turbulent free shear flows (Broadwell & Breidenthal 1982 ; Broadwell 
& Mungall988; Broadwell 1988,1989), although the assumptions of that picture are 
not built into the linear-eddy model. 

Consistency with the BBM picture is a consequence of the development of internal 
superlayers in the simulated mixing field through the combined influence of large 
eddies transporting fresh fluid parcels inward and small eddies breaking up the 
parcels. The Sc-dependence of the mixing rate within these superlayers is captured 
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by the model because molecular diffusion is incorporated as a distinct mechanism, 
implemented in a physically sound manner. 

Limitations of the available experimental data have been noted with regard to 
several issues that have been addressed. It is hoped that the capability demonstrated 
here to model the dependence of jet mixing on Sc as well as on Re will motivate 
further high-resolution measurements of the scalar fluctuation intensity, unmixed- 
fluid probability, and scalar dissipation for diverse conditions. The desirability of 
measured radial profiles of mean and fluctuating scalar quantities conditioned to 
remove transverse displacements has been noted. A jet analogue of Warhaft’s (1984) 
two-source correlation experiment in grid turbulence has been proposed and 
simulated, again in the hope of motivating further measurements. The latter 
computation suggests a novel mechanistic basis for Sc-dependence of the mixing 
rate. 

A feature common to the two-source computation, the differential-diffusion 
computation, and finite-rate chemistry problems considered previously (Kerstein 
1989) is that two or more independent scalars are needed for a complete 
characterization of the process. It is evident that  such multivariate scalar fields arise 
in a variety of problems, with molecular diffusion serving as a source of scalar 
fluctuations in the case of differential diffusion. For all the aforementioned problems, 
linear-eddy computations reveal distinctive features. The asymmetric p.d.f.’s of 
differential diffusion, the incomplete mixing of distinct components of the nozzle 
fluid, and the factorization (Kerstein 1989) of chemical product dependences on Pe 
and D a  are predicted features of fundamental interest that merit additional 
experimental study. 

The issues addressed here are of practical as well as fundamental interest. For 
example, concentration-field statistics are most conveniently measured in many 
flows using seeded particles or other tracers with Sc far different from the species of 
interest for predicting chemical reactions (Bilger 1989). Therefore a model with the 
capabilities demonstrated here may be needed in order to extrapolate from measured 
concentration statistics to those governing the chemical reaction rate. 

Finally, implications of the present and previous applications of the linear-eddy 
approach are considered with regard to invariant modelling concepts for turbulent 
mixing. In these applications, an effort has been made to keep configuration-specific 
modelling inputs to a minimum. It is encouraging that this approach has succeeded 
in reproducing key trends and features of scalar mixing measured in grid turbulence, 
planar shear layers, and round jets, despite the well-known idiosyncracies of these 
flows, such as the coherent structures observed in mixing layers (Brown &, Roshko 
1974). This suggests that  the principal influence of flow geometry on scalar mixing 
properties at high R e  is embodied in the similarity laws (or an  equivalent description 
of large-scale evolution) which determine the length- and timescales for convective 
stirring in accordance with the Kolmogorov inertial-range cascade. 
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